

电动二维扫描镜(音圈扫描镜)

电动二维扫描镜的核心技术是基于可变形镜片的工作原理。镜片由一个容器组成,容器里装有光学流体,并用弹性聚合物薄膜进行密封。电磁驱动器对容器施压,导致镜片弯曲。因此,通过驱动器线圈内的电流改变来控制镜头的焦距(或表面的曲面形状),进而实现光束扫描。我们全新设计的 2D 光束控制扫描镜给研究和产品开发提供了光束扫描的颠覆性新方案。这些镜片可分为反射模式(2D 反射镜)或透射模式(可调棱镜)。

主要特点

- 单个光学元件的二维光束偏转扫描
- 大孔径和宽光束角度
- 小巧轻便

定位反馈双轴矢量扫描镜

双轴镜的优点是其结构小巧,大镜面与极大倾斜角相结合,并可选择任一轴共振。内置 反馈系统保证了高精度的定位控制。2D 反射镜的虚拟旋转点离反射镜表面很近使得 2D 扫描 镜可直接向前。此镜片适用于汽车工业(激光雷达,动态头灯,ADAS),生物识别、机器视觉、医疗和 3D 打印。

激光准直和稳像可调棱镜

我们的可调棱镜(TP, tunable prism)适用于光传输时的对准和光束控制。其低吸收率使其适合大功率应用。低色散液体也使其可用于多色激发应用。

三维光束控制扫描系统

将 2D 扫描镜与电动变焦镜相结合,可快速地在任意点定位激光束光斑。非常适用于动态前照灯(汽车)、诊断和光谱设备以及 3D 打印。

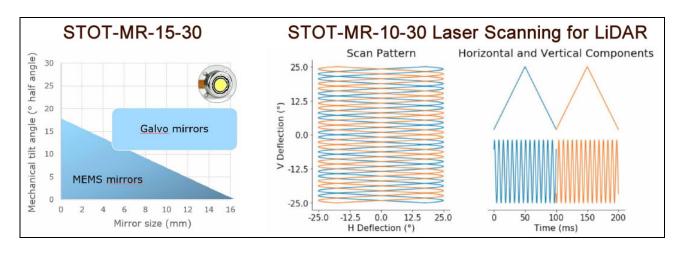
1. 位置反馈双轴矢量扫描镜

STOT-MR-15-30, STOT-MR-10-30

紧凑、快速、精准的光束控制

如果需要小体积与大角度视野的双轴扫描镜,STOT-MR-15-30 会是绝佳的选择。STOT-MR-15-30 最小直径可达 15 mm、机械倾斜角度±25°,同时对应光学偏转±50°。此镜片内建有一个位置反馈系统,使用标准 PID 控制器在 100mrad 范围内可精确控制偏转角度在±5μrad 内。除了常见的准静态版本,我们还开发两种共振的版本,即单轴共振镜头、线性轴加垂直共振轴结合的版本。与扫描振镜相比,STOT-MR-15-30 的旋转原点非常靠近镜面中心,另可选用不同范围波长的反射膜,如紫外线、可见光与近红外光。

主要优势


- 大二维扫描角度
- 结构小巧
- 精度高

主要应用

- 汽车(激光雷达、动态前照灯、ADAS)
- 视觉(视野扩展、缩放)
- 生物测定(眼睛跟踪)、诊断设备和 3D 打印

参数	STOT-MR-15-30	STOT-MR-10-30
扫描方向	2D双轴	2D双轴
机械倾斜角度	X轴: ±25°; Y 轴±25°	X轴: ±25°(慢轴); Y 轴±12.5°(快轴)
镜片直径	15 mm	10 mm
分辨率(闭环)	<5 urad	<5 urad
重复性RMS	30 - 100 urad	30 - 100 urad (慢) X轴
转动频率	20 Hz	X 轴: 20Hz (慢轴); Y 轴: 280 Hz (快轴)
镜片涂层	金,保护层银膜	金,保护层银膜
镜片反射率	平均>97% @NIR	平均>97% @NIR
平面精度P-V	$\lambda/2$	$\lambda/2$

2. 可调棱镜 STOT-TP-12-16

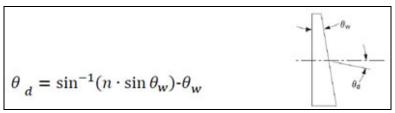
可调棱镜是可调节的楔形物,它可以让两个有 AR 涂覆的光学性能平坦的玻璃窗相对于彼此倾斜。这两个玻璃窗通过一个波纹管结构链接在一起,这个波纹管结构内填充了低色散的透明光学液。核心元件可以与各种致动元件集成在一起,例如机械或电动导螺杆,音圈和压电驱动器

主要应用

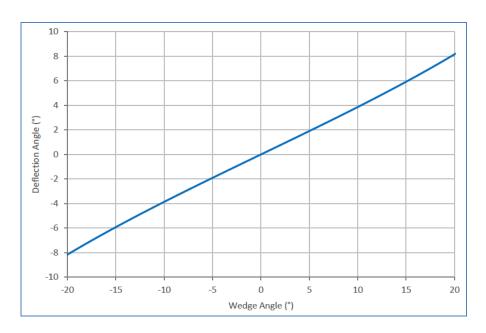
- 在光路中使激光偏转,可在光路调整,光源与探测准直时使用。
- 激光测距仪
- 图像稳定
- 光東控制

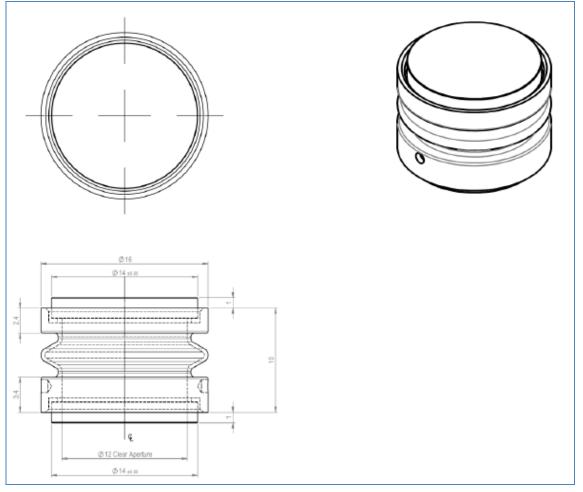
下表是我们的标准产品,我们也可根据客户要求来调整流体和玻璃涂层,可根据您的具体要求定制可调棱镜。如有需要请与我们联系。

光学参数

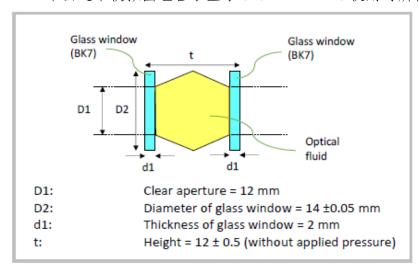

最大光学偏移(525nm)	8.2度		
折射指数 (25°, 525nm)	1. 38		
阿贝数 V (25°C)	63		
窗片平滑	0. 5		
反射指数比温度(dn/dT)	-3.3e-4° C		
透射谱宽	420-950 nm		
镜片损伤阈值(525nm)	根据所选镀膜 kW/cm²		
吸收	<0.1%		
偏正变化	保持		
储存温度	【-40, +85】° C		

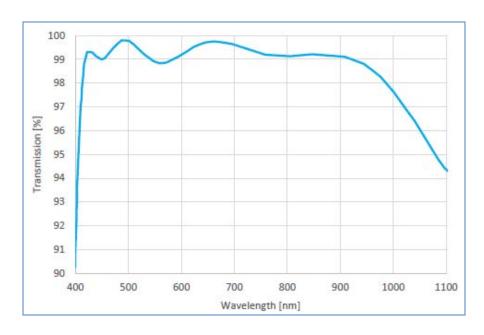
光束偏转


光从左到右通过尖角为 θw 的楔形物时的光束偏转由下面公式决定:



其中n是楔形物内光学流体的折射率




光学布局

下面这个模拟图包含了型号 STOT-TP-12-16 使用时所需的信息。

透射光范围

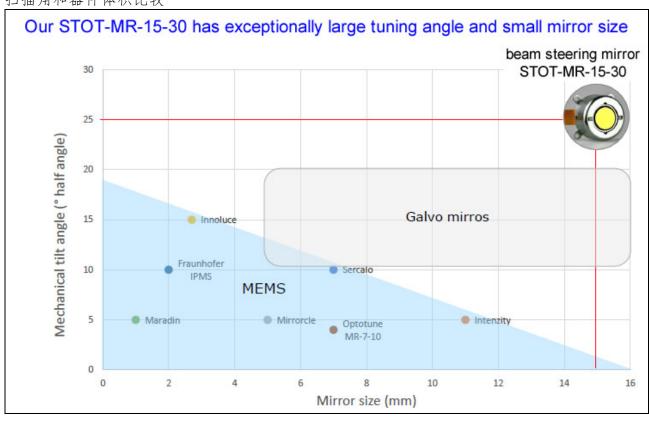
在 250-2500nm 波长范围内, 光学流体和两块玻璃窗高度透明, 几乎不吸收光。下图显示了可见光 (420-950nm) 范围内的透射光谱, 玻璃窗可根据客户要求镀膜。

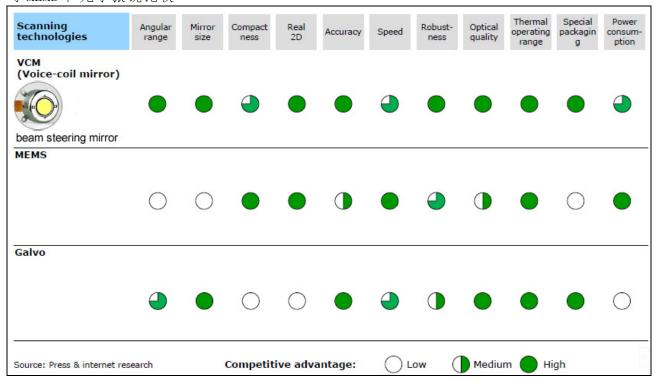
安装方式

STOT-TP-12-16 有多种安装方式,下图是一个简单的机械万向安装组件。

3. 2D 扫描镜驱动器组件 STOT-MR-E-2

STOT-MR-E-2 驱动器是二维扫描镜的配套解决方案。它由电子驱动控制设备和反射镜组成。此驱动程序有多种操作模式,但只与我们的镜片兼容。可以通过我们的用户界面从主机控制。此外,驱动程序还提供以下通信接口: USB、SPI、模拟信号;控制界面板与CPU板可定作;可独立运作的开发版本包含控制界面板与二维转向镜,以及基座。


产品型号	含镜片类型	包含的配件
STOT-MR-E-2 基础件	N/A	STOT-MR-E-2 基础件控制器盒, 电源, USB 线
STOT-MR-E-2 镀金镜面	STOT-MR-15-30-G-25x25D	镜头(包括镜片和电缆)保护盖、散热器
STOT-MR-E-2 镀银镜面	STOT-MR-15-30-PS- 25x25D	镜头(包括镜片和电缆)保护盖、散热器
STOT-MR-E-2 定制镜片	STOT-MR-C-15-30 (定制 镜片),或共振镜片 MR- 10-30-G/MR-10-30-PS	镜头(包括镜片和电缆)保护盖、散热器
STOT-MR-E-2 OEM 版本	N/A	转接板(无外壳)、CPU板(无外壳)、代理板(无镜头)、连接电缆



4. 与其它扫描技术的比较

扫描角和器件体积比较

与 MEMS 和光学振镜比较

